
When are supercomputers worth the bother?

N

Jeffrey B. Mulligan

ASA Ames Research Center

y

s

Abstract: The availability of the UNIX operating system on large supercomputers has greatl

implified the importation of research software from workstations and minicomputers.

n

s

Supercomputers generally offer much larger memory and storage areas than are available o

maller machines, which may make their use mandatory for some large applications.

y

C

Realization of the full performance offered by vectorizing supercomputers such as the Cra

90 sometimes requires modification of existing code. The use of high-level interpreters for

t

the development of applications is recommended to minimize the amount of compiled code

hat must be optimized.

For those with access, supercomputers offer high computing power and large capacity.

a

These seductive attributes are sometimes offset by high up-front costs associated with

dapting software. In this paper we will examine some of the tradeoffs in determining the

benefit to be derived from using a supercomputer.

Recent years have seen a dramatic increase in the amount of computing power offered in

desktop computers; it is hopeful (dare I say likely?) that future increases will continue at the



- 2 -

t

s

same phenomenal rate. The concept of what is a supercomputer is therefore somewha

lippery, when today’s workstation would have been considered a supercomputer 10 years

f

t

ago, and today’s supercomputer may fit on a single chip ten years hence. For the purposes o

he present discussion, the term "supercomputer" shall refer to a machine which is so

e

o

expensive that it is not an option for an individual, or even a group of researchers, to purchas

ne for their exclusive use. Such machines therefore are found only in central computing

c

centers which serve many users. As one would hope, their high cost does bring with it

ertain unique features which may make their use imperative in certain applications. For

e

d

other applications, these machines may offer improved performance on a job which could b

one on a smaller machine. And for other applications, the performance gain may be small

(

--- which, if any work at all is required to make the program run on the new machine

"porting"), may not be worth the trouble.

This paper will focus on the Cray C90 here at Ames Research Center. The primary

l

o

feature offered by this machine is "vectorization" hardware, by which a series of numerica

perations is executed in parallel. To support large physical simulations, a correspondingly

f

large amount of memory and disk storage is provided (see table 1). This system has the

eature that, in general, code written for it looks similar to and will run on smaller machines;

o

the compiler automatically determines when the machine should vectorize. In order to

ptimize performance, however, the programmer will want to read the report of the

d

o

optimizations done by the compiler to insure that all desired vectorizations are indee

ccurring. Certain codes may have to be rewritten to make this happen.

y

p

This situation is to be contrasted with another type of supercomputer, the massivel

arallel machine exemplified by the Connection Machine, which consists of a large number



- 3 -

y

u

(thousands) of relatively simple processors. The architecture of this machine is inherentl

nsuited to traditional linear programming languages, which has necessitated the introduction

p

of language extensions to exploit the special features of these machines. The resulting

rograms can no longer be run as-is on a traditional machine, although emulators are available

which allow development and debugging to be done on workstations.

�������������������������������������������

�
Memory Capacities

�����������������������������������������

�
Machine RAM

�����������������������������������������

�
SUN Sparc2 64Mb

�����������������������������������������

�
SGI Indigo2 64Mb

�����������������������������������������

�
Cray C90 1600Mb

�����������������������������������������
��
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�

&
C
Table 1: Comparison of RAM complement of example workstations

ray supercomputer. Numbers represent the actual memory installed in

f
the test systems, which is not necessarily the maximum capacity of a
ully-populated system.

Because supercomputer time is usually at a premium, interoperability (i.e., the ability to

d

test programs on personal systems) is an important consideration. A major step in this

irection was the adoption by Cray Research of UNIX (tm) as the basis of their UNICOS

i

operating system, providing an environment similar to that of most workstations. An

mportant aspect of a common operating system is the fact that users do not have to learn and

T

remember two sets of commands for file manipulation and other housekeeping functions.

his also makes porting applications from workstations up to the Cray simpler in most cases

p

than porting down to DOS or Macintosh environments. Application programs that are easily

orted allow development and debugging of a small-scale version to be done on a local



- 4 -

.workstation, followed by a full-scale run on the supercomputer

In keeping with this philosophy, and to minimize the amount of code that must be

-

p

ported, it is often useful to concentrate coding efforts on the development of fairly general

urpose interpretive programs. Current commercially available examples include systems

.

T

such at Matlab and Mathematica, but the idea can be extended to locally developed codes

he fundamental idea is to have a single copy of the often-used routines, and use a text

g

l

interpreter to control the sequencing. Specific applications are then coded in the scriptin

anguage instead of the low-level programming language. In addition to producing a cleaner,

a

more readable program which is easily understood and modified, these scripted applications

re transparently portable once the interpreter itself has been ported. This philosophy has

Q

driven the development here at Ames of an interactive image-processing system known as

uIP (QUick Image Processing), which consists of a number of modules coded in C,

including a text interpreter which controls the other functions.

Although text interpretation imposes additional overhead (compared to a compiled

,

c

program), this overhead is often insignificant when the interpreted directives refer to the large

omputationally intensive operations which are most likely to be run on a supercomputer in

r

the first place. This is particularly true of image processing, where a simple statement

equesting that two images be added together may result in a quarter of a million floating

point operations.

The QuIP interpreter was used to produce the performance comparison given in table 2.

t

A simple script was written which created 2 1K x 1K images, initialized them, and computed

he pixelwise product 100 times. The time to process 1 million pixels (one image’s worth) is

obtained by dividing the running time by 100, and the reciprocal of this number is the



- 5 -

d

a

throughput in megaflops (floating point operations per second). (The numbers thus obtaine

re lower than the various manufacturers specifications because the inner loops of the QuIP

routines are written to handle objects with non-contiguous data.)

�	���������������������������������������������������������������������������������������������������������������������������������������������

�
Compute Throughput


�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�




Machine Elapsed time CPU utilization Throughput (Mflops)

���������������������������������������������������������������������������������������������������������������������������������������������

�
SUN Sparc2 2:18 93% 0.7

���������������������������������������������������������������������������������������������������������������������������������������������

�
SGI Indigo2 1:00 96% 1.6

����������������������������������������������������������������������


Cray C90 (unvectorized) 0:24 88% 5

���������������������������������������������������������������������������������������������������������������������������������������������

�
Cray C90 (vectorized) 0:03 37% 100

���������������������������������������������������������������������������������������������������������������������������������������������
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

i
Table 2: Comparison of run times on a simple problem. CPU utilization
s the percentage of the elapsed time during which the CPU was active

w
on the test job; these numbers fall below 100% when the CPU has to

ait for input/output activity (e.g. disk access) to complete, or because

A

the CPU is shared with other users.

s can be seen from the last two lines of Table 2, while the unvectorized performance of

i

the Cray C90 is nothing to sneeze at, it is in the same ballpark as the workstations (and

ndeed there are higher-end workstations on the market today that can duplicate this

f

m

performance). The vectorized performance, on the other hand, is almost two orders o

agnitude better than the workstations, and for many jobs may represent a worthwhile

e

s

speedup. Unfortunately, this performance was not obtained when the current version of th

oftware was recompiled on the Cray, and it may be instructive to see why not. The C code

f

for the inner loop of the routine which does the multiplication was something like the

ollowing fragment:



- 6 -

)
fl
multiply� vectors(p1,inc1,p2,inc2,p3,inc3,n

oat *p1, *p2, *p3;
;

{
int inc1, inc2, inc3, int n

while(n--){
*p3 = *p1 * *p2;

p
p1 += inc1;
2 += inc2;

;

W

}
}

p3 += inc3

hile this subroutine may be somewhat obscure to readers not familiar with pointers and C,

v

the function is fairly simple: the addresses of three arrays of data are passed in the pointer

ariables p1, p2 and p3. The arrays are scanned, with the product of the entries pointed to by

p

p1 and p2 being deposited in the location pointed to by p3. After each multiplication, the

ointers are incremented by the arguments inc1, inc2 and inc3.

n

i

Why does this subroutine not vectorize as written? The key to successful vectorizatio

s that the values of the variables in a given iteration must not depend on values computed in

i

previous iterations. Now, in the above example, the value of pointer p1 is incremented by

nc1, i.e. the new value is the value from the last iteration plus inc1. In this case, because the

p

increment is not changed, it is possible to determine ahead of time what the values of the

ointers will be in every iteration, but unfortunately the compiler is not smart enough to

s

v

recognize this on its own! The following code fragment does exactly the same thing, but i

ectorized by the compiler:

multiply� vectors(p1,inc1,p2,inc2,p3,inc3,n)

i
float *p1, *p2, *p3;
nt inc1, inc2, inc3, int n;

{
int i, i1=0, i2=0, i3=0;

for(i=0;i<n;i++){
p3[i3] = p1[i1] * p2[i2];



i
i1 += inc1;

- 7 -

2 += inc2;
;

B

}
}

i3 += inc3

y the above reasoning, it might be thought that this code would not vectorize, since the

t

e

values of i1, i2 and i3 are computed iteratively, like the values of the pointers in the firs

xample. The compiler, however, happily vectorizes this version, evidently treating pointer

d

variables differently from indices!? The confusing nature of this example illustrates the

egree to which programming supercomputers is still something of a black art. Because of

y

b

this, it is desirable to use subroutines from standard mathematical libraries (that have alread

een optimized and tested by someone else) whenever possible.

e

f

In summary, the large capacity of supercomputers make them possibly the only choic

or simulating very large systems. For medium-sized problems, faster execution speed may

l

not be adequate compensation for the extra programming effort required. The use of high-

evel interpretive systems is recommended both to make applications portable and minimize

the amount of compiled code that must be maintained.


